In recent years, foreign material present in food products have comprised a large root cause of recalls. Plastic, metal, wood, and other extraneous items are commonly found, as reported in various regulatory agency published incident reports. While the source of the foreign material contamination often varies across each product category, and may often be unknown, incident investigations have pointed towards process inputs and materials, equipment, and tools as contributing factors. As with all factors, the design and maintenance of processing equipment has become more heavily scrutinized as a means to mitigate associated risk.
The prevention of food product contamination resulting from foreign material associated with equipment begins with a basic understanding of sanitary design. Once this foundation is established, methodologies to assess and quantify risk to the product can be determined. Control measures, including redesign, can subsequently be implemented to address any identified high-risk concerns.
Counting on Sanitary Design
Sanitary design is often defined as the process by which equipment and facilities are designed or reconfigured to enable effective cleaning, inspection, and preventative maintenance in an effort to reduce risk in three critical areas: physical (foreign materials), biological, and chemical. Food manufacturers need to develop sanitary design programs that seek to reduce overall risk associated with the three risk types. Internal programs and standards based on historical manufacturing risk and recommendations from industry associations provide the foundation for effective food safety control associated with equipment design. Several food industry organizations publish sanitary design recommendations for reduction in adverse food safety incidents. Examples of these include the North American Meat Institute (NAMI), 3-A Sanitary Standards Inc., and the European Hygienic Engineering Design Group.
Examples of basic elements of sanitary design programs that seek to address common equipment design risks include:
- Wear points and friction zones;
- Material selection and compatibility;
- Locations of critical components;
- Surface finishes and welding; and
- Ease of inspection and maintenance.
Wear points and friction zones on equipment are critical areas where foreign material contamination may arise. Design programs seek to identify and reduce the prevalence of these areas during operations. Common cases include plastic on plastic (conveyor belts with support or diversion guides), metal on plastic (wire belts with plastic guides), and metal on metal (grinding knives and plates). Many sources of wear and friction stem from improper setup, inadequate maintenance, or misalignment. Careful consideration should also be placed on how food product may induce additional wear on equipment components—for instance, grinding frozen meat—and how the specific equipment operates over the course of a production timeframe. A best practice recommendation is to catalog points of wear and friction on equipment to allow for further analysis and preventative measures.
Selecting the proper equipment materials and understanding overall compatibility with all aspects of the manufacturing process is also a key point to consider. Typical industry guidance as noted from the NAMI sanitary design checklist includes:
- Metals should be stainless steel and appropriate for the process;
- Composites, plastics, and synthetics are made of metal detectable materials (compliant to CFR 21 175-177) and limited in use in product zones;
- Coated, plated, or painted surfaces are not utilized in product zones;
- Exposed fibers are not utilized; and
- Selected materials are compatible with each other.
For instance, improper metals (uncoated aluminum, carbon steel, etc.) likely to become corroded during the chemical sanitation process pose a risk through flaking and premature failure. Considerations must also be taken for anticipated temperatures, process characteristics, and production runtime when selecting components.
The placement of components utilized in the construction of processing equipment is of high concern and should be thoroughly reviewed. Component failure or breakage is often attributed to foreign material incidents. Items that pose a risk of breakage, falling off, or failure should not be located in the product zone. Examples of items that should be mounted outside of product zones include, but are not limited to, electrical items (switches, e-stops, sensors, panels, conduit, cables, etc.), mechanical items (motors, gearboxes, drives, bearings, etc.), identification items (name tags, plates, labels, etc.), and fasteners.
ACCESS THE FULL VERSION OF THIS ARTICLE
To view this article and gain unlimited access to premium content on the FQ&S website, register for your FREE account. Build your profile and create a personalized experience today! Sign up is easy!
GET STARTED
Already have an account? LOGIN