Commercially available foods and beverages are exposed to a variety of substances during production and storage processes. The materials in contact with foods leach into the products and could have an impact on consumer health. Leaching is exacerbated when the plastic is exposed to heat. Increasing concern about food contact materials has led to a heightened need for manufacturers and processors to conduct contamination analysis.
This article first presents a method to detect polyethylene terephthalate (PET) and, next, a technique to identify phthalate esters. Each is a chemical used to manufacture plastics commonly found in food and beverage packaging materials. By using these analytical procedures, it is possible to identify the source of contamination and take appropriate countermeasures.
To identify PET, we demonstrate qualitative analysis of assumed resins in a food packaging material by using a pyrolysis-GC/MS method, including analysis of trace contaminants and contaminants in multilayer films, which are difficult to analyze using a Fourier transform infrared (FTIR) spectrometer.
Then, we demonstrate how to identify specific phthalate esters by confirming their molecular weight using the solvent mediated chemical ionization (SMCI) method. This technique is an effective alternative to using electron ionization, in which mass spectra are similar, which makes identification difficult.
Analyzing Resins in Food Packaging Material Using Pyrolysis-GC/MS
The FTIR and energy dispersive X-ray fluorescence (EDXRF) spectrometers are commonly used in identifying contaminants by instrumental analysis. However, these methods have limitations when analyzing trace impurities and contaminants in multilayer films. A different approach that enables the qualitative analysis of resin materials and additives contained in trace organic contaminants involves thermal methods: pyrolysis-GC/MS and thermal extraction-GC/MS.
Here we present an analysis of the resins in a food packaging material using the pyrolysis-GC/MS method, assuming food contamination. A Shimadzu OPTIC-4 multimode inlet for GC/MS was used in the analysis by pyrolysis-GC/MS. Because the OPTIC-4 enables high-speed heating (60°C/s) to a maximum temperature of 600°C, diverse sample injection modes are available and simple pyrolysis was possible.
Sample and analysis conditions. A commercially available food packaging material was used as the real sample material. The sample material was cut with a knife to obtain a sample weighing approximately 0.2 mg, which was inserted into the difficult matrix introduction (DMI) microvial of the OPTIC-4 and then set in the DMI insert liner.
Qualitative analysis of resin material. Figure 1 shows the obtained pyrogram (total ion chromatogram obtained by pyrolysis-GC/MS). According to a reference containing pyrolysis data on resins, this is a distinctive pyrogram of polyethylene (PE), in which hydrocarbon species are arranged at equal intervals. Therefore, it could be inferred that the foreign matter in this experiment contains PE as the base material.
In addition to the peaks seen in the pyrogram of PE, three distinctive peaks—(a) to (c) —are also detected in the pyrogram of the real sample. Compound identification of these peaks was carried out using the NIST Research Library and the above-mentioned reference. As a result, it was found that (b) is caprolactam, a compound characteristically seen as a pyrolysis product of polyamide (PA), and (a) and (c) were identified respectively as 4-(vinyloxycarbonyl) benzoic acid and benzoic acid, which are compounds characteristically seen as pyrolysis products of PET.
Based on these results, the foreign matter measured in this experiment was estimated to be a composite resin containing polyamide (PA) and PET in addition to PE.
To identify contaminants in food products, the resins contained in an assumed foreign matter sample were analyzed by the pyrolysis-GC/MS method in an OPTIC-4 multimode inlet. As a result, qualitative analysis of the composite resin was possible from the pyrogram and pyrolysis products. Thus, this experiment demonstrates the possibility of qualitative analysis of resin materials using the pyrolysis-GC/MS method, including analysis of trace contaminants and contaminants in multilayer films, which are difficult to analyze using FTIR. This analysis technique makes it possible to identify the source of contamination and take appropriate countermeasures.
Identification of Phthalate Esters Using the SMCI Method
During production and storage processes, commercially available foods and beverages come into contact with a variety of substances, such as phthalate esters, which are used as plasticizers for polyvinyl chloride. Phthalate esters present a health concern because of their connection with endocrine disruption effects, developmental toxicity, reproductive toxicity, and tissue damage.
ACCESS THE FULL VERSION OF THIS ARTICLE
To view this article and gain unlimited access to premium content on the FQ&S website, register for your FREE account. Build your profile and create a personalized experience today! Sign up is easy!
GET STARTED
Already have an account? LOGIN