Purchasing a loaf of bread is a near-everyday experience for many consumers. Choice of brand depends primarily on what is important to the consumer in terms of taste and texture. One additional consideration is how fresh the bread remains for an extended period of time after it is bought. Aging of bread is referred to as “staling.” The average person thinks of it as hardening of the bread with a firmer and less-desirable texture.
Texture Tests
Bakeries, especially large ones, conduct texture and staling tests on daily production batches to ensure that performance criteria for freshness and life expectancy are satisfied. The instrument used for testing is called a texture analyzer, which works by pushing a probe into the food item being evaluated. Rate of penetration by the probe is specified in the test method. A load cell inside the instrument measures the resistance to penetration and records the force in scientific units of grams, or Newtons. Choice of load cell force range and resolution is typically indicated in the method. When testing sliced breads in the U.S., 4,500-gram load cell with resolution of 0.5 grams is generally sufficient. Higher capacity load cells are available from manufacturers of texture analyzers if needed.
Figure 1 shows a cylindrical probe with 36-millimeter (mm) diameter positioned above two bread slices. It is called TA-AACC36 and comes from a specification created by the American Association of Cereal Chemists. This is the preferred choice when evaluating sliced bread for firmness and springiness. It is a relatively inexpensive item and attaches to any texture analyzer with standard M3 threaded coupling.
Texture Profile Analysis
The standard method for characterizing bread is a two-cycle test called Texture Profile Analysis (TPA). The probe pushes down into two bread slices stacked on top of one another at 1 mm/second to a depth of 4 mm. The instrument begins to record the measured force after a trigger load of 5 grams is detected. When the probe reaches 4 mm, it reverses direction and returns to its starting position. While this takes place, the bread will spring back to some extent. The probe then commences its second penetration cycle. The point of contact may take place slightly later than the first cycle because the bread does not fully recover to its original position. The probe pushes down again to a distance of 4 mm and records the measured force as before. The peak force measured during the second cycle may be lower due to internal structural damage during the first compression cycle.
Preparation of samples for the staling test involves placement of bread slices on a tray. Removal from the original packaging allows exposure to room humidity for a defined time interval to accelerate the staling process. Four-hour increments are a typical choice. The above TPA test is conducted on fresh slices taken out of the packaging while those on the tray remain untouched for four hours before testing.
Figure 2 shows graphical data from the TPA test on fresh bread slices (Sample A) versus those that have been left on the tray to stale (Sample B). The y-axis is registered in units of grams force while the x-axis is simply the timeline in seconds. Sample A exhibits a peak load of 184.5 grams on the first cycle when the probe has compressed the bread slices to a depth of 4 mm. The second cycle has a slightly lower peak load of 179 grams. Sample B by comparison has higher peak loads of 371.5 grams and 361.5 grams on cycles 1 and 2, respectively.
ACCESS THE FULL VERSION OF THIS ARTICLE
To view this article and gain unlimited access to premium content on the FQ&S website, register for your FREE account. Build your profile and create a personalized experience today! Sign up is easy!
GET STARTED
Already have an account? LOGIN