How do food manufacturers of sauces and dressings distinguish their premium brand products? Taste comes first and foremost. Not far behind is the handling property—namely, visual appearance in the bottle and flow behavior when poured on salad. Consumers judge “thickness” and “creaminess” in the supermarket by holding the bottle and moving it gently from one side to another. Perception of how the dressing is likely to pour comes from this simple action. In general, careful application of dressing requires controlled flow from the bottle so that just the right amount comes out. Customer dissatisfaction arises when too much dressing gushes suddenly from the bottle or the squeezing action cannot get sufficient quantity to expel within a short time frame.
Food scientists responsible for formulation of dressings must evaluate flow properties and then set guidelines for QC during manufacturing. Yield stress is one property of interest; this defines how much squeezing force or shaking action is needed to initiate easy flow of salad dressing. Viscosity is essentially “resistance to flow;” it quantifies the physical property that relates to flow rate of salad dressing during pouring. Creep is the property that characterizes how the salad dressing behaves after it deposits on the salad. The point of interest is whether it clings firmly to the coated items or does flow continue causing it to drain off the salad.
All three properties are important, but viscosity alone has been the traditional parameter of interest. In recent years, premium brand manufacturers have also focused on yield stress and creep for the following reasons:
- Visual inspection of salad dressing in the bottle is equivalent to making a judgement on yield stress;
- Ease of use when initiating flow requires a yield stress that can be readily overcome by shaking or squeezing; and
- Adherence to salad components like lettuce and tomato requires minimal creep flow.
Flow Behavior
Figure 1 shows a rheometer with vane spindle used by R&D to characterize the flow behavior of salad dressings. The vane is immersed into a container of salad dressing and rotated at very low speed, perhaps 1 rpm, to determine “yield stress.” Figure 2a illustrates the type of data curve that results when plotting stress on the y-axis and strain on the x-axis. The slope of the rising curve is called “modulus” and its value relates to the “stiffness” of the dressing.
The steeper the slope, the stiffer the formulation. When the peak value for stress is measured, this correlates with “yield stress” for the dressing. Figure 2b compares two salad dressing formulations for yield stress.
The upper curve shows the premium brand that has both higher modulus and yield stress. This stands to reason since dressings with more body are generally preferred by consumers who suspect that “thinner” formulations may be watered down.
Figure 3a shows the data curve that characterizes creep behavior. Low stress is applied to the vane spindle by the rheometer to simulate the action of gravity acting on dressing after it is poured on salad. The data curve shows flow movement of the dressing as a strain value on the y-axis plotted against time on the x-axis. The flatter the strain curve, the less movement of dressing after application to salad. Figure 3b compares the same two dressing formulations. Note that the premium brand has lower creep profile. This makes sense because the non-brand is more likely to not cling as readily to salad.
ACCESS THE FULL VERSION OF THIS ARTICLE
To view this article and gain unlimited access to premium content on the FQ&S website, register for your FREE account. Build your profile and create a personalized experience today! Sign up is easy!
GET STARTED
Already have an account? LOGIN